Ecoregionalization is the process by which a territory is classified in similar areas according to specific environmental and climatic factors. The climate and the environment strongly influence the presence and distribution of vectors responsible for significant human and animal diseases worldwide. In this paper, we developed a map of the eco-climatic regions of Italy adopting a data-driven spatial clustering approach using recent and detailed spatial data on climatic and environmental factors. We selected seven variables, relevant for a broad set of human and animal vector-borne diseases (VBDs): Standard deviation of altitude, mean daytime land surface temperature, mean amplitude and peak timing of the annual cycle of land surface temperature, mean and amplitude of the annual cycle of greenness value, and daily mean amount of rainfall. Principal Component Analysis followed by multivariate geographic clustering using the k-medoids technique were used to group the pixels with similar characteristics into different ecoregions, and at different spatial resolutions (250 m, 1 km and 2 km). We showed that the spatial structure of ecoregions is generally maintained at different spatial resolutions and we compared the resulting ecoregion maps with two datasets related to Bluetongue vectors and West Nile Disease (WND) outbreaks in Italy. The known characteristics of Culicoides imicola habitat were well captured by 2/22 specific ecoregions (at 250 m resolution). Culicoides obsoletus/scoticus occupy all sampled ecoregions, according to its known widespread distribution across the peninsula. WND outbreak locations strongly cluster in 4/22 ecoregions, dominated by human influenced landscape, with intense cultivations and complex irrigation network. This approach could be a supportive tool in case of VBDs, defining pixel-based areas that are conducive environment for VBD spread, indicating where surveillance and prevention measures could be prioritized in Italy. Also, ecoregions suitable to specific VBDs vectors could inform entomological surveillance strategies.

Defining ecological regions in Italy based on a multivariate clustering approach. A first step towards a targeted vector borne disease surveillance / Ippoliti, C.; Candeloro, L.; Gilbert, M.; Goffredo, M.; Mancini, G.; Curci, G.; Falasca, S.; Tora, S.; Di Lorenzo, A.; Quaglia, M.; Conte, A.. - In: PLOS ONE. - ISSN 1932-6203. - 14:7(2019), pp. 1-21. [10.1371/journal.pone.0219072]

Defining ecological regions in Italy based on a multivariate clustering approach. A first step towards a targeted vector borne disease surveillance

Falasca S.;
2019

Abstract

Ecoregionalization is the process by which a territory is classified in similar areas according to specific environmental and climatic factors. The climate and the environment strongly influence the presence and distribution of vectors responsible for significant human and animal diseases worldwide. In this paper, we developed a map of the eco-climatic regions of Italy adopting a data-driven spatial clustering approach using recent and detailed spatial data on climatic and environmental factors. We selected seven variables, relevant for a broad set of human and animal vector-borne diseases (VBDs): Standard deviation of altitude, mean daytime land surface temperature, mean amplitude and peak timing of the annual cycle of land surface temperature, mean and amplitude of the annual cycle of greenness value, and daily mean amount of rainfall. Principal Component Analysis followed by multivariate geographic clustering using the k-medoids technique were used to group the pixels with similar characteristics into different ecoregions, and at different spatial resolutions (250 m, 1 km and 2 km). We showed that the spatial structure of ecoregions is generally maintained at different spatial resolutions and we compared the resulting ecoregion maps with two datasets related to Bluetongue vectors and West Nile Disease (WND) outbreaks in Italy. The known characteristics of Culicoides imicola habitat were well captured by 2/22 specific ecoregions (at 250 m resolution). Culicoides obsoletus/scoticus occupy all sampled ecoregions, according to its known widespread distribution across the peninsula. WND outbreak locations strongly cluster in 4/22 ecoregions, dominated by human influenced landscape, with intense cultivations and complex irrigation network. This approach could be a supportive tool in case of VBDs, defining pixel-based areas that are conducive environment for VBD spread, indicating where surveillance and prevention measures could be prioritized in Italy. Also, ecoregions suitable to specific VBDs vectors could inform entomological surveillance strategies.
2019
algorithms; animals; bluetongue; cluster analysis; epidemiological monitoring; geographic mapping; humans; insect vectors; Italy; multivariate analysis; principal component analysis; sheep; vector borne diseases; West Nile fever; ecosystem
01 Pubblicazione su rivista::01a Articolo in rivista
Defining ecological regions in Italy based on a multivariate clustering approach. A first step towards a targeted vector borne disease surveillance / Ippoliti, C.; Candeloro, L.; Gilbert, M.; Goffredo, M.; Mancini, G.; Curci, G.; Falasca, S.; Tora, S.; Di Lorenzo, A.; Quaglia, M.; Conte, A.. - In: PLOS ONE. - ISSN 1932-6203. - 14:7(2019), pp. 1-21. [10.1371/journal.pone.0219072]
File allegati a questo prodotto
File Dimensione Formato  
Ippoliti_Defining-ecological-regions_2029.pdf

accesso aperto

Note: Articolo su rivista
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 4.07 MB
Formato Adobe PDF
4.07 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1630112
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact